COCO新记录:60.6AP!微软提出采用注意力机制进行检测头统一的Dynamic Head

本文提出一种新颖的动态头框架,它采用注意力机制将不同的目标检测头进行统一。COCO数据集上实验验证了所提方案的有效性与高效性。以ResNeXt-101-DCN为骨干,将目标检测的性能提升到了54.0AP。
目标检测中定位与分类合并的复杂性衍生出了各式各样的算法,然而这些方法从不同的角度出发进行目标检测性能的提升,难以从一个统一的角度进行分析度量。
本文提出一种新颖的动态头框架,它采用注意力机制将不同的目标检测头进行统一。通过特征层次之间的注意力机制用于尺度感知,空间位置之间的注意力机制用于空间感知,输出通道内的注意力机制用于任务感知,该方法可以在不增加计算量的情况显著提升模型目标检测头的表达能力。
COCO数据集上实验验证了所提方案的有效性与高效性。以ResNeXt-101-DCN为骨干,我们将目标检测的性能提升到了54.0AP,取得了一个新的高度;更进一步,采用最新的Transformer骨干与额外数据,我们可以将COCO的指标推到一个新记录:60.6AP。

原文连接

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
搜索