可以下载《深度学习》的中文版 pdf 和英文版 pdf 直接阅读。
推荐github高星项目,该作者提供书中原理python代码实现,方便更好的理解书中原理和公式,将笔记详细写成了一书深度学习_原理与代码实现.pdf。《深度学习》涉及到的每一个概念,该书都有详细的描述、原理层面的推导,以及用代码的实现。代码实现不会调用 Tensorflow、PyTorch、MXNet 等任何深度学习框架,甚至包括 sklearn (pdf 里用到 sklearn 的部分都是用来验证代码无误),一切代码都是从原理层面实现 (Python 的基础库 NumPy),并有详细注释,与代码区上方的原理描述区一致,你可以结合原理和代码一起理解。具体章节如下:
中文章节 | 英文章节 | 下载 (含推导与代码实现) |
---|---|---|
第一章 前言 | 1 Introduction | |
第二章 线性代数 | 2 Linear Algebra | |
第三章 概率与信息论 | 3 Probability and Information Theory | |
第四章 数值计算 | 4 Numerical Computation | |
第五章 机器学习基础 | 5 Machine Learning Basics | |
第六章 深度前馈网络 | 6 Deep Feedforward Networks | |
第七章 深度学习中的正则化 | 7 Regularization for Deep Learning | |
第八章 深度模型中的优化 | 8 Optimization for Training Deep Models | |
第九章 卷积网络 | 9 Convolutional Networks | |
第十章 序列建模:循环和递归网络 | 10 Sequence Modeling: Recurrent and Recursive Nets | |
第十一章 实践方法论 | 11 Practical Methodology | |
第十二章 应用 | 12 Applications | |
第十三章 线性因子模型 | 13 Linear Factor Models | |
第十四章 自编码器 | 14 Autoencoders | |
第十五章 表示学习 | 15 Representation Learning | |
第十六章 深度学习中的结构化概率模型 | 16 Structured Probabilistic Models for Deep Learning | |
第十七章 蒙特卡罗方法 | 17 Monte Carlo Methods | |
第十八章 直面配分函数 | 18 Confronting the Partition Function | |
第十九章 近似推断 | 19 Approximate Inference | |
第二十章 深度生成模型 | 20 Deep Generative Models |
具体参考:https://github.com/MingchaoZhu/DeepLearning
目前该笔记还没有更新完成,大家可以长期关注,相关pdf下载可以在项目链接中找到,如果失效可以在本站下载。
深度学习花书中英文pdf版本
fqg7
复制
[…] https://polarai.cn/265.html […]